status
date
type
summary
tags
category
slug
password
icon

数组

  • 「数组 array」是一种线性数据结构,其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」
notion image

数组常用操作

1、初始化数组

我们可以根据需求选用数组的两种初始化方式:无初始值、给定初始值。在未指定初识值的情况下,大多数编程语言会将数组元素初始化为0

2、访问元素

数组元素被存储在连续的内存空间中,意味着计算数组元素的内存地址非常容易。给定数组内存地址(首元内存地址)和某个元素的索引。
notion image
  • 首个元素的索引为0,索引本质上是内存地址的偏移量
  • 在数组中访问元素非常高效,我们可以在 O(1) 时间内随机访问数组中的任意一个元素。

3、插入元素

数组元素在内存中数组元素在内存中是“紧挨着的”,它们之间没有空间再存放任何数据。
如果想在数组中间插入一个元素,则需要将该元素之后的所有元素都向后移动一位,之后再把元素赋值给该索引。
notion image
由于数组的长度是固定的,因此插入一个元素必定会导致数组尾部元素“丢失”。

4、删除元素

若想删除索引 i 处的元素,则需要把索引 i 之后的元素都向前移动一位。
notion image
删除元素完成后,原先末尾的元素变得“无意义”了,所以我们无须特意去修改它。
  • 数组的插入与删除操作有以下缺点
      1. 时间复杂度高:数组的插入和删除的平均时间复杂度为 O(n),其中 n 为数组长度。
      1. 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会丢失。
      1. 内存浪费:可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是“无意义”的,但这样做会造成部分内存空间浪费。

5、遍历数组

可以通过索引遍历数组,也可以直接遍历获取数组中的每个元素

6、查找元素

在数组中查找指定元素需要遍历数组,每轮判断元素值是否匹配,若匹配则输出对应索引。
因为数组是线性数据结构,所以查找操作被称为“线性查找”。

7、扩容数组

在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在大多数编程语言中,数组的长度是不可变的
如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 O(n) 的操作,在数组很大的情况下非常耗时。代码如下所示:

数组的优点和局限性

数组存储在连续的内存空间内,且元素类型相同。这种做法包含丰富的先验信息,系统可以利用这些信息来优化数据结构的操作效率。
  • 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。
  • 支持随机访问:数组允许在 O(1) 时间内访问任何元素。
  • 缓存局部性:当访问数组元素时,计算不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓存来提升后续操作的执行速度。
连续空间存储是一把双刃剑,其存在以下局限性
  • 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。
  • 长度不可变:数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。
  • 空间浪费:如果数组分配的大小超过实际所需,那么多余的空间就浪费了。

数组典型应用

数组是一种基础且常见的数据结构,既频繁应用在各类算法之中,也可用于实现各种复杂数据结构。
  • 随机访问:如果我们想随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现随机抽样。
  • 排序和搜索:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数组上进行。
  • 查找表:当需要快速查找一个元素或其对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
  • 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
  • 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实际上是一个二维数组。

链表

内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。
「链表 linked list」是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,通过它可以从当前节点访问到下一个节点。
链表的设计使得各个节点可以分散存储在内存各处,它们的内存地址无须连续。
notion image
链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。
  • 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
  • 尾节点指向的是“空”,它在 Java、C++ 和 Python 中分别被记为 null、nullptr 和 None 。
  • 在 C、C++、Go 和 Rust 等支持指针的语言中,上述的“引用”应被替换为“指针”。
链表节点 ListNode 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间

链表常用操作

1、初始化链表

建立链表分为两步,第一步是初始化各个节点对象,第二步是构建节点之间的引用关系。初始化完成后,我们就可以从链表的头节点出发,通过引用指向 next 依次访问所有节点。
数组整体是一个变量,比如数组 nums 包含元素 nums[0] 和 nums[1] 等,而链表是由多个独立的节点对象组成的。我们通常将头节点当作链表的代称,比如以上代码中的链表可记作链表 n0 。

2、插入节点

假设我们想在相邻的两个节点 n0 和 n1 之间插入一个新节点 P ,则只需改变两个节点引用(指针)即可,时间复杂度为 O(1) 。
相比之下,在数组中插入元素的时间复杂度为 O(n) ,在大数据量下的效率较低。
notion image

3、删除节点

在链表中删除节点也非常方便,只需改变一个节点的引用(指针)即可
尽管在删除操作完成后节点 P 仍然指向 n1 ,但实际上遍历此链表已经无法访问到 P ,这意味着 P 已经不再属于该链表了。
notion image

4、访问节点

在链表中访问节点的效率较低。我们可以在 O(1) 时间下访问数组中的任意元素。链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 i 个节点需要循环 i-1 轮,时间复杂度为 O(n) 。

5、查找节点

遍历链表,查找其中值为 target 的节点,输出该节点在链表中的索引。此过程也属于线性查找。代码如下所示:

数组 VS 链表

数组与链表的效率对比
数组
链表
存储方式
连续内存空间
分散内存空间
容量扩展
长度不可变
可灵活扩展
内容效率
元素占用内存少、但可能浪费空间
元素占用内存多
访问元素
O(1)
O(n)
添加元素
O(n)
O(1)
删除元素
O(n)
O(1)

常见链表类型

常见的链表类型包括三种
  • 单向链表:即前面介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空 。
  • 环形链表:如果我们令单向链表的尾节点指向头节点(首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
  • 双向链表:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
notion image

链表典型应用

单向链表通常用于实现栈、队列、哈希表和图等数据结构。
  • 栈与队列:插入和删除操作都在链表的一端进行时,它表现出先进后出的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
  • 哈希表:链式地址是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
  • :邻接表是表示图的一种常用方式,其中图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常用于需要快速查找前一个和后一个元素的场景。
  • 高级数据结构:比如在红黑树、B 树中,我们需要访问节点的父节点,这可以通过在节点中保存一个指向父节点的引用来实现,类似于双向链表。
  • 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
  • LRU 算法:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加和删除节点。这时候使用双向链表就非常合适。
环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。
  • 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循环操作可以通过环形链表来实现。
  • 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用环形链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个环形链表,以便实现无缝播放。

链表

「列表 list」是一个抽象的数据结构概念,它表示元素的有序集合,支持元素访问、修改、添加、删除和遍历等操作,无须使用者考虑容量限制的问题。列表可以基于链表或数组实现。
  • 链表天然可以看作一个列表,其支持元素增删查改操作,并且可以灵活动态扩容。
  • 数组也支持元素增删查改,但由于其长度不可变,因此只能看作一个具有长度限制的列表。
当使用数组实现列表时,长度不可变的性质会导致列表的实用性降低。这是因为我们通常无法事先确定需要存储多少数据,从而难以选择合适的列表长度。若长度过小,则很可能无法满足使用需求;若长度过大,则会造成内存空间浪费。
为解决此问题,我们可以使用「动态数组 dynamic array」来实现列表。它继承了数组的各项优点,并且可以在程序运行过程中进行动态扩容。

列表常用操作

1、初始化列表

我们通常使用“无初始值”和“有初始值”这两种初始化方法:

2、访问元素

列表本质上是数组,因此可以在 O(1) 时间内访问和更新元素,效率很高。

3、插入与删除元素

相较于数组,列表可以自由地添加与删除。在列表尾部添加元素的时间复杂度为 O(1) ,但插入和删除元素的效率仍与数组相同,时间复杂度为 O(n) 。

4、遍历列表

与数组一样,列表可以根据索引遍历,也可以直接遍历各元素。

5、拼接列表

给定一个新列表 nums1 ,我们可以将其拼接到原列表的尾部。

6、排序列表

完成列表排序后,我们便可以使用在数组类算法题中经常考查的“二分查找”和“双指针”算法。

列表实现

  • 初始容量:选取一个合理的数组初始容量。在本示例中,我们选择 10 作为初始容量。
  • 数量记录:声明一个变量 size ,用于记录列表当前元素数量,并随着元素插入和删除实时更新。根据此变量,我们可以定位列表尾部,以及判断是否需要扩容。
  • 扩容机制:若插入元素时列表容量已满,则需要进行扩容。先根据扩容倍数创建一个更大的数组,再将当前数组的所有元素依次移动至新数组。在本示例中,我们规定每次将数组扩容至之前的 2 倍。
C版本
C++版本

小结

  • 数组和链表是两种基本的数据结构,分别代表数据在计算机内存中的两种存储方式:连续空间存储和分散空间存储。两者的特点呈现出互补的特性。
  • 数组支持随机访问、占用内存较少;但插入和删除元素效率低,且初始化后长度不可变。
  • 链表通过更改引用(指针)实现高效的节点插入与删除,且可以灵活调整长度;但节点访问效率低、占用内存较多。
  • 常见的链表类型包括单向链表、环形链表、双向链表,它们分别具有各自的应用场景。
  • 列表是一种支持增删查改的元素有序集合,通常基于动态数组实现,其保留了数组的优势,同时可以灵活调整长度。
  • 列表的出现大幅地提高了数组的实用性,但可能导致部分内存空间浪费。
  • 程序运行时,数据主要存储在内存中。数组可提供更高的内存空间效率,而链表则在内存使用上更加灵活。
  • 缓存通过缓存行、预取机制以及空间局部性和时间局部性等数据加载机制,为 CPU 提供快速数据访问,显著提升程序的执行效率。
  • 由于数组具有更高的缓存命中率,因此它通常比链表更高效。在选择数据结构时,应根据具体需求和场景做出恰当选择。
绪论栈和队列
雨落波敛
雨落波敛
早上好中午好晚上好
统计
文章数:
15
公告
status
date
type
summary
tags
category
slug
password
icon
🎉 Welcome To My Blog 🎉
✍🏼记录生活与学习日常🗓️
👓偶尔分享看的推文💬
🧙🏼‍♂️保持热爱🥳